<u>CHAPTER TWO</u> OPERATIONS WITH REAL NUMBERS

QUESTION 1

- (a) Prove that for any two distinct real positive numbers a and b, $(a + b)/2 > \sqrt{ab}$.
- (b) If a, b, c are distinct real numbers, show that $(a + b + c)^2 > 3(ab + bc + ca)$.
- (c) Solve the following equations for real values of x, y:

 $3^{x+1} + 3^{2x} = 4$

- (d) Solve the following equations
 - (i) Log(x + 1) + 2log y = 2log 3....(i) Log x + log y = log 6...(ii)(ii) $x^4 - 10x^3 + 32x^2 - 40x + 16 = 0$
- (e) Find the square root of $8 4\sqrt{3}$.

Solution:

(a) For any two distinct real positive numbers a and b, $(\sqrt{a} - \sqrt{b})^2 > 0$. $\implies (\sqrt{a} - \sqrt{b})(\sqrt{a} - \sqrt{b}) > 0 \implies a + b - 2\sqrt{ab} > 0$, $a + b > 2\sqrt{ab} \qquad \therefore (a + b)/2 > \sqrt{ab}$.

Note that (a + b)/2 is the arithmetic mean of a and b while \sqrt{ab} is their geometric mean.

(b) The LHS,
$$(a + b + c)^2 = (a + b + c) (a + b + c) =$$

 $a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = a^2 + b^2 + c^2 + 2(ab + bc + ca)$.
But $(a + b)/2 > \sqrt{ab}$ \implies $a + b > 2\sqrt{ab}$
 $\implies (a + b)^2 > (2\sqrt{ab})^2$ $\implies (a + b) (a + b) > 4ab$,
 $a^2 + 2ab + b^2 > 4ab$ $\implies a^2 + b^2 > 2ab$.
If $a^2 + b^2 > 2ab$, then, $a^2 + b^2 + c^2 > ab + bc + ca$.
Hence, our expression:
 $a^2 + b^2 + c^2 + 2(ab + bc + ca) > (ab + bc + ca) + 2(ab + bc + ca)$
 $a^2 + b^2 + c^2 + 2(ab + bc + ca) > 3(ab + bc + ca)$
 $\therefore (a + b + c)^2 > 3(ab + bc + ca)$.

(d)(i) For the first equation, $\log(x + 1) + 2\log y = 2\log 3$, we have: $\log(x + 1) + \log y^2 = \log 3^2$ $\implies \log\{(x + 1) y^2\} = \log 9 \implies (x + 1) y^2 = 9$ (1) For the second equation, $\log x + \log y = \log 6$, $\log(xy) = \log 6 \implies xy = 6$(2) x = 6/y(3) Substituting (3) in (1): $\frac{6}{y} + 1$ $y^2 = 9$ $\implies \frac{6+y}{y} y^2 = 9$ $(6 + y) y^2 = 9y$, $6y^2 + y^3 = 9y$, $y(6y + y^2) = 9y$, $\implies y^2 + 6y - 9 = 0$. Using Quadratic Formula to find y gives: $y = -6 \pm \sqrt{(6)^2 - 4(1)(-9)} = -6 \pm \sqrt{36 + 54} = -6 \pm \sqrt{36 + 54} = -6 \pm \sqrt{90} = -6 \pm 9.49 = -6 \pm \sqrt{90} = -6 \pm 9.49 = -6 \pm 9.49 = -6 \pm \sqrt{90} = -6 \pm 9.49 = -6 \pm \sqrt{90} = -7.745$. So,

$$x = 6 = 6$$
 or $6 = 3.442$ or -0.775
 $\overline{x} = \frac{1.743}{1.743} = \frac{-7.745}{-7.745}$

$$\therefore$$
 (x, y) = (3.44, 1.74) or (-0.76, -7.75)

(ii) Dividing through by x², we have: $x^2 - 10x + 32 - \frac{40}{x} + \frac{16}{x^2} = 0$.

Collecting like terms,

$$x^{2} + \frac{16}{x^{2}} - 10x - \frac{40}{x} + 32 = 0$$

 $\left[x^{2} + \frac{16}{x^{2}}\right] - 10\left[x + \frac{4}{x}\right] + 32 = 0$

Let
$$y = x + \frac{4}{x}$$
, $y^2 = \left[x + \frac{4}{x}\right]^2$
 $y^2 = x^2 + 16 + \frac{16}{x^2}$, $y^2 - 16 = x^2 + \frac{16}{x^2}$

Our equation becomes:

$$(y^2 - 16) - 10y + 32 = 0 \implies y^2 - 10y + 16 = 0,$$

 $y^2 - 8y - 2y + 16 = 0, \qquad y(y - 8) - 2(y - 8) = 0,$
 $(y - 8)(y - 2) = 0, \qquad \Longrightarrow \qquad y = 8 \text{ or } 2.$
So, $x + \frac{4}{x} = 8$ (i) or $x + \frac{4}{x} = 2$ (ii)

For (i),
$$\frac{x^2 + 4}{x} = \frac{8}{1}$$
 \implies $x^2 + 4 = 8x$,

 $x^2 - 8x + 4 = 0$. Using Quadratic Formula to find x gives:

$$x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(1)(4)}}{2(1)}$$

$$x = \frac{8 \pm \sqrt{64 - 16}}{2} = \frac{8 \pm \sqrt{48}}{2}$$

$$= \frac{8 \pm 6.93}{2} = \frac{8 \pm 6.93}{2} \text{ or } \frac{8 - 6.93}{2}$$

$$\therefore x = 7.46 \text{ or } 0.54$$
For (ii), $\frac{x^2 + 4}{x} = \frac{2}{1} \implies x^2 + 4 = 2x, \qquad x^2 - 2x + 4 = 0$

Using Quadratic Formula to find x gives:

$$x = -(-2) \pm \sqrt{(-2)^2 - 4(1)(4)} = 2 \pm \sqrt{4 - 16} = 2 \pm \sqrt{-12}$$

$$= 2 \pm \sqrt{12 x - 1} = 2 \pm (\sqrt{12} x \sqrt{-1})$$
 (Note: $\sqrt{-1} = i$)

$$= 2 \pm \sqrt{12} i = 2 \pm 3.46i$$

$$= 2 \pm 3.64i = 0$$
 or $2 - 3.64i$

$$= (1 + 1.73i) = 0$$
 or $(1 - 1.73i)$

$$\therefore$$
 The values of x are: 7.46, 0.54, $(1 + 1.73i)$ and $(1 - 1.73i)$.

Note that (1+1.73i) and (1-1.73i) are complex numbers, i.e. they are not real numbers.

(e)

Let
$$\sqrt{8} - 4\sqrt{3} = \sqrt{x} - \sqrt{y}$$
.
Squaring both sides:
 $8 - 4\sqrt{3} = (\sqrt{x} - \sqrt{y})(\sqrt{x} - \sqrt{y})$
 $x - 2\sqrt{xy} + y = (x + y) - 2\sqrt{xy}$

Comparing LHS with RHS,

$$x + y = 8....(i)$$
,

 $2\sqrt{xy} = 4\sqrt{3} \longrightarrow xy = 12 \dots$

(ii)

Solving (i) and (ii) simultaneously: From (ii), $x = \frac{12}{y}$ (iii). Putting this into equation (i) gives: $\frac{12}{y} + y = 8$ $\frac{12 + y^2}{y} = \frac{8}{1} \longrightarrow 12 + y^2 = 8y$

$$y^{2} - 8y + 12 = 0, \qquad y^{2} - 6y - 2y + 12 = 0$$

$$y(y - 6) - 2(y - 6) = 0, \qquad (y - 6)(y - 2) = 0$$

$$\therefore y = 6 \text{ or } 2$$

$$\therefore x = \frac{12}{y} = \frac{12}{6} \quad \text{or} \quad \frac{12}{2} = 2 \text{ or } 6. \qquad \therefore (x, y) = (2, 6) \text{ or } (6, 2).$$

$$\therefore \sqrt{8 - 4\sqrt{3}} = (\sqrt{2} - \sqrt{6}) \text{ or } (\sqrt{6} - \sqrt{2}) = \pm (\sqrt{2} - \sqrt{6})$$

QUESTION 2:

- (a) Factorise $(x^2 + 4x)^2 + 2(x^2 + 4x) 15 = 0$.
- (b) Solve for x: $(4 + \sqrt{15})^x + (4 \sqrt{15})^x = 62$.

Solution:

- (a) Let $p = x^2 + 4x$ \implies $p^2 + 2p 15 = 0$, $p^2 + 5p 3p 15 = 0$ p(p+5) - 3(p+5) = 0, (p+5)(p-3) = 0 $\therefore (x^2 + 4x + 5) (x^2 + 4x - 3) = 0$ Note: If we were asked to solve, then, $x^2 + 4x + 5 = 0$ or $x^2 + 4x - 3 = 0$
- (b) To solve this type of equation involving plus (+) or minus (-) sign between the terms {i.e. $(4 + \sqrt{15})^x \pm (4 \sqrt{15})^x = 62$ }, write one of the terms in brackets in form of the other:

$$\frac{1}{(4 - \sqrt{15})} \quad x \quad \frac{(4 + \sqrt{15})}{(4 + \sqrt{15})} = \frac{(4 + 15)}{4^2 - (\sqrt{15})^2}$$

$$= \frac{4 + \sqrt{15}}{16 - 15} = \frac{4 + \sqrt{15}}{1} = 4 + \sqrt{15}$$
So, $\frac{1}{4 - 15} = 4 + \sqrt{15}$
The equation is now:
$$\left[\frac{1}{(4 - \sqrt{15})^x} + (4 - \sqrt{15})^x = 62 \quad \Longrightarrow \quad \frac{1}{(4 - 15)^x} = 62 \right]$$
Let $(4 - \sqrt{15})^x = p$

So,
$$\frac{1}{p} + \frac{p}{1} = 62$$
 $\implies \frac{1+p^2}{p} = 62$
 $1+p^2 = 62p$ $\implies p^2 - 62p + 1 = 0$. Using Quadratic Formula to find p

gives:

$$p = \frac{-(-62) \pm \sqrt{(-62)^2 - 4(1)(1)}}{2(1)}$$
$$p = \frac{62 \pm \sqrt{3844 - 4}}{3844 - 4} = \frac{62 \pm 61.97}{2}$$

$$p = \frac{62 + 61.97}{2} \quad \text{or} \quad \frac{62 - 61.97}{2} = 62 \quad \text{or} \quad 0.015$$
So, $(4 - \sqrt{15})^x = 62$ (i) $\text{or} \quad (4 - \sqrt{15})^x = 0.015$ (ii)
For (i), $\log(4 - \sqrt{15})^x = \log 62$ \longrightarrow $x \log(4 - \sqrt{15})^x = \log 62$
 $\therefore x = \frac{\log 62}{\log (4 - \sqrt{15})} = -2$
For (ii), $\log(4 - \sqrt{15})^x = \log (0.015)$
 $x \log (4 - \sqrt{15}) = \log (0.015)$
 $\therefore x = \frac{\log (0.015)}{\log (4 - \sqrt{15})} = 2$
 $\therefore x = -2 \text{ or } 2$

Note: If the sign between the terms is (x) or (+), use indices and logarithms approach directly.

QUESTION 3:
(a) Solve for x in
$$\sqrt{\boxed{\frac{a-x}{b+x}}} - \sqrt{\boxed{\frac{b+x}{a-x}}} = \frac{3}{2}$$

(b) Resolve $(x^3 - x^2 - 3x + 5)$ into partial fractions. $(x-1)(x^2-1)$

Solution:

(a) Let
$$\frac{a-x}{b+x} = p$$

 $\Rightarrow \sqrt{p} - \sqrt{\frac{1}{p}} = \frac{3}{2}$

$$\boxed{\frac{1}{a-x}} = \frac{b+x}{a-x}$$

Squaring both sides gives:

$$\sqrt{p} - \sqrt{\frac{1}{p}}^2 = \begin{bmatrix} 3\\ 2 \end{bmatrix}^2$$

$$p - \sqrt{1} - \sqrt{1} + \frac{1}{p} = \frac{9}{4}$$

$$p - 1 - 1 + \frac{1}{p} = \frac{9}{4}$$

$$p - 2 + \frac{1}{p} = \frac{9}{4}$$

$$4p^{2} - 17p + 4p = 0 \longrightarrow 4p^{2} - 16p - 1p + 4p = 0 \longrightarrow$$

$$4p(p - 4) - 1(p - 4) = 0 \longrightarrow (4p - 1)(p - 4) = 0$$

$$\therefore p = \frac{1}{4} \text{ or } 4$$
Hence,
$$\frac{a - x}{b + x} = \frac{1}{4} \text{ or } \frac{a - x}{b + x} = 4$$
From $\frac{a - x}{b + x} = \frac{1}{4}$, $\longrightarrow 4(a - x) = 1(b + x) \longrightarrow 4a - 4x = b + x$

$$5x = 4a - b \qquad \therefore x = \frac{4a - b}{5}$$
Also,
From $\frac{a - x}{b + x} = 4$, $\longrightarrow 4(b + x) = 1(a - x) \longrightarrow 4b + 4x = a - x$

$$5x = a - 4b \qquad \therefore x = \frac{a - 4b}{5}$$

(b)
$$\frac{x^3 - x^2 - 3x + 5}{(x - 1)(x^2 - 1)} = \frac{x^3 - x^2 - 3x + 5}{x^3 - x^2 - x + 1}$$
Dividing gives:
$$\frac{1}{x^3 - x^2 - x + 1} \frac{1}{x^3 - x^2 - 3x + 5} \frac{x^3 - x^2 - 3x + 5}{x^3 - x^2 - x + 1} - 2x + 4$$

So,
$$\frac{x^3 - x^2 - 3x + 5}{x^3 - x^2 - x + 1} = 1 + \frac{-2x + 4}{x^3 - x^2 - x + 1}$$

Now, we resolve $\frac{-2x + 4}{x^3 - x^2 - x + 1}$ into its partial fractions.

$$\implies \frac{-2x+4}{(x-1)(x^2-1)} = \frac{-2x+4}{(x-1)(x-1)(x+1)}$$

(Note: $x^2 - 1 = x^2 - 1^2 = (x + 1)(x - 1)$ (Difference of two squares)

Let
$$\frac{-2x+4}{(x-1)^2(x+1)} = \frac{A}{(x-1)} + \frac{B}{(x-1)^2} + \frac{C}{(x+1)}$$

$$\equiv \underline{A(x-1)(x+1) + B(x+1) + C(x+1)^2}$$

$(x-1)^2(x+1)$						
When $x = 1$, -2(1) + 4 = 0 + 2B + 0 $\implies 2 = 2B \therefore B = 1$						
When x = -1 -2(-1) + 4 = 0 + 0 + 4C $\implies 6 = 4C$ $\therefore C = \frac{3}{2}$						
$\begin{aligned} A(x-1)(x+1) + B(x+1) + C(x-1)(x-1) &= Ax^2 - A + Bx + B + Cx^2 - 2Cx + C \\ &= (A+C)x^2 + (B-2C)x + (B+C-A) \end{aligned}$						
So, $-2x + 4 = (A + C)x^2 + (B - 2C)x + (B + C - A)$. Comparing coefficients gives: A + C = 0(i) $B - 2C = -2$ (ii) $B + C - A = 4$ (iii) From (i), $A + \frac{3}{2} = 0$ $\therefore A = -\frac{3}{2}$						
Hence, $\frac{-2x+4}{(x-1)^2(x+1)} = \frac{-3/2}{(x-1)} + \frac{1}{(x-1)^2} + \frac{3/2}{(x+1)}$						
$= \frac{-3}{2(x-1)} + \frac{1}{(x-1)^2} + \frac{3}{2(x+1)}$						
$\therefore \frac{x^3 - x^2 - 3x + 5}{(x - 1)(x^2 - 1)} = 1 - \frac{3}{2(x - 1)} + \frac{1}{(x - 1)} + \frac{3}{2(x + 1)}$						

Note: In resolving a function into its partial fractions, the first thing you have to check is the relationship between the degree of numerator and the degree denominator. If the degree of numerator \geq degree of denominator, then, you must first divide using long division as shown in the working. If the degree of numerator < degree of denominator, you should resolve the function directly.

In resolving a function into its partial fractions, there are basically four categories of functions namely:

- (1) Functions with LINEAR FACTORS at the denominator
- (2) Functions with NON-LINEAR FACTORS at the denominator
- (3) Functions with REPEATED FACTORS at the denominator, and
- (4) Functions which is an IMPROPER FRACTION

1.	Function with LINEAR FACTORS at the denominator.

E.g.	Q	,	P	,	
((x-1)(2x+3)		(5x + 1)(3x + 2)(x + 5)		etc.

In resolving this function, write:

The function = $\frac{A}{\text{the 1}^{\text{st}} \text{ linear factor}}$ + $\frac{B}{\text{the 2}^{\text{nd}} \text{ linear factor}}$ For example: $\frac{Q}{(x-1)(2x+3)} = \frac{A}{(x-1)} + \frac{B}{(2x+3)}$

Function with NON-LINEAR FACTORS at the denominator. 2.

E.g. Q, $(2x^2 + 3)(5x^3 + 2x^2 + 3x + 1)$, etc., i.e. the degree of the variable x is more

than 1.

In resolving this function, write:

$$\frac{Q}{(2x^2+3)(5x^3+2x^2+3x+1)} = \frac{Ax+B}{(2x^2+3)} + \frac{Cx^2+Dx+E}{(5x^3+2x^2+3x+1)}$$

i.e. the degree of numerator should be 1 less than that of the denominator. However, before you commence this, you have to check whether the non-linear factors are factorizable into linear factors or not. This method is applicable only if the non-linear factors cannot be factorized into linear factors.

Function with REPEATED FACTORS at the denominator. 3.

E.g.
$$\frac{Q}{(x-1)^2(2x+3)^2}$$
, $\frac{P}{(3x+1)^2(3x^2+4)^2}$, etc.

To resolve these, write:
E.g.
$$\frac{Q}{(x-1)^2(2x+3)^2} = \frac{A}{(x-1)} + \frac{B}{(x-1)^2} + \frac{C}{(2x+3)} + \frac{D}{(2x+3)^2}$$
.
 $\frac{P}{(3x+1)^2(3x^2+4)^2} = \frac{A}{(3x+1)} + \frac{B}{(3x+1)^2} + \frac{Cx+D}{(3x^2+4)} + \frac{Ex+F}{(3x^2+4)^2}$

Note that $3x^2 + 4$ is an non-linear factor.

Function which is an IMPROPER FRACTION 4

E.g.
$$\frac{x^3 - x^2 - 3x + 5}{x^2 + 2x + 1}$$
, $\frac{x^3 - x^2 - 3x + 5}{x^3 - x^2 - x + 1}$, $\frac{x^3 - x^2 - 3x + 5}{(x - 1)(x^2 - 1)}$, etc.

To resolve an improper fraction, divide first using long division. Expression in question 3b above is an improper fraction.

QUESTION 4:

(a) Solve for x in $x^4 - 5x^3 + 6x^2 - 5x + 1 = 0$

(b) Express the rational function

$$f(x) = \frac{5-6x-8x^2}{(1+2x)^2(1-x)}$$

in partial fractions.

<u>Solution:</u>

(a) Dividing through by x² gives:

$$x^{2} - 5x + 6 - \frac{5}{x} + \frac{1}{x^{2}} = 0$$
Collecting the like terms gives:

$$x^{2} + \frac{1}{x^{2}} - 5x - \frac{5}{x} + 6 = 0$$

$$\begin{bmatrix} x^{2} + \frac{1}{x^{2}} \end{bmatrix} - 5\begin{bmatrix} x + \frac{1}{x} \end{bmatrix} + 6 = 0$$
Let $y = x + \frac{1}{x} \implies y^{2} = x^{2} + \frac{1}{x^{2}} + 2$

$$y^{2} - 2 = x^{2} + \frac{1}{x^{2}}$$
Hence, the equation becomes:

$$(y^{2} - 2) - 5y + 6 = 0$$

$$y^{2} - 5y + 4 = 0, \quad y^{2} - 4y - 1y + 4 = 0$$

$$y(y - 4) - 1(y - 4) = 0, \quad (y - 4)(y - 1) = 0$$

$$y = 4 \text{ or } 1$$
So, $x + \frac{1}{x} = 4$

$$\frac{x^{2} + 1}{x} = \frac{4}{1} \xrightarrow{x^{2} + 1} = 4$$

$$\frac{x^{2} + 1}{x} = \frac{4}{1} \xrightarrow{x^{2} + 1} = 4$$

$$x^{2} - 4x + 1 = 0.$$
Using Quadratic Formula to find x gives:
 $x = -\frac{6}{2} \pm \sqrt{\frac{12}{2}} = \frac{4 \pm 2\sqrt{3}}{2}$

$$x = \frac{4 \pm \sqrt{12}}{2} = \frac{4 \pm 2\sqrt{3}}{2} = 2 \pm \sqrt{3} \text{ or } 2 - \sqrt{3}$$
For (ii), $x + \frac{1}{2} = 1$

 $\sqrt{-3} = \sqrt{3} \frac{2}{x} - 1 = \sqrt{3} \frac{1}{x} \sqrt{-1} = \sqrt{-3} i$ ($\sqrt{-1}$ is always represented by i)

(b) Let
$$\frac{5-6x-8x^2}{(1+2x)^2(1-x)} \equiv \frac{A}{(1+2x)} + \frac{B}{(1+2x)^2} + \frac{C}{(1-x)}$$

 $\equiv \frac{A(1+2x)(1-x) + B(1-x) + C(1+2x)^2}{(1+2x)^2(1-x)}$
Now, equating the numerators to each other:
 $5-6x-8x^2 = A(1+2x)(1-x) + B(1-x) + C(1+2x)^2$
When x = 1, we have:
 $5-6(1)-8(1)^2 = 0 + 0 + 9C$ \longrightarrow $-9 = 9C$ \therefore C = -1
When x = -\frac{1}{2},

 $5 - 6(-\frac{1}{2}) - 8(-\frac{1}{2})^2 = 0 + \frac{3}{2}B + 0 \longrightarrow 6 = \frac{3}{2}B \qquad \therefore B = 4$

To find A, we have to:

- (i) expand the RHS numerator
- (ii) express it as a polynomial of x variable and

(iii) compare its coefficient with that of LHS numerator.

So,
$$A(1+2x)(1-x) + B(1-x) + C(1+2x)^2 = A(1+x-2x^2) + B(1-x) + C(1+4x+4x^2)$$

=
 $A + Ax - 2Ax^2 + B + Bx + C + 4Cx + 4Cx^2 = 4Cx^2 - 4Ax^2 + Ax - Bx + 4Cx + A + B + C$

$$C =$$

$$(4C-2A)x^2 + (A-B+4C)x + (A+B+C)$$

LHS numerator = $-8x^2 - 6x + 5$

So, we have: 4C - 2A = -8(i) A - B + 4C = -6(ii) A + B + C = 5(iii) Using equation (iii) with C = -1, B = 4 obtained above, we have: A + 4 - 1 = 5 \longrightarrow A = 2Therefore, $\frac{5 - 6x - 8x^2}{(1 + 2x)^2(1 - x)} = \frac{2}{(1 + 2x)} + \frac{4}{(1 + 2x)^2} - \frac{1}{(1 - x)}$

Note that you can use either equation (i) or (ii) also to determine A.

QUESTION 5

(a) Express $\frac{4}{16r^2 + 8r - 3}$ in partial fractions.

(b)(i) Show that if $y = \log_a x$, then, $\log_x a = \frac{1}{y}$ where a > 0, x > 0.

(ii) Hence or otherwise, find the solution set of the inequality $\log_x a \le \log_a x$, a > 1.

To get the complete past questions and solutions/explanations on **Operations with Real Numbers**, you can contact: 08033487161, 08177093682 or osospecial2015@yahoo.com for just N500 (\$1).

You can also get the past questions and solutions/explanations for the remaining topics on MTH 101.